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Abstract

A numerical finite-difference model is presented for the study of the factors controlling the properties of composites reinforced with platelets
and fiber-like nano-inclusions. The approach provides a comprehensive treatment of the dependence of composite modulus and strength on the
shape of the inclusions and the interrelated effects of their orientation, volume fraction, aspect ratio, modulus and interfacial properties with the
matrix. At the same volume fraction, we find that platelets are generally more efficient than fibers in improving composite modulus. This is
rationalized through our model finding that fibers have a typically low critical aspect ratio value, which puts an upper limit to their reinforcement
potential. Platelets also turn out to be superior to fibers in all nanocomposites characterized by a poor orientation of the inclusions. We also find
that low interfacial adhesion and poor dispersion of the inclusions lead to a decrease in reinforcement efficiency. Turning to comparison with
experiment, a good agreement is found between our model predictions and modulus data on nanocomposites reinforced with montmorillonite

platelets and carbon nanotubes.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Recently, there has been a great interest in the use of nano-
particles for the reinforcement of polymeric materials. Typical
inclusions are made of carbon nanotubes or clay platelets such
as montmorillonite (MMT). Both structures are characterized
by a very high modulus and aspect ratio and they offer excep-
tional reinforcement at low filler concentrations, often a frac-
tion of what is typically required in conventional composites.
In spite of its importance, there is still very little understanding
of the dependence of nanocomposite properties on the intrinsic
characteristics of the inclusions. These characteristics include
aspect ratio, modulus, orientation and quality of the dispersion
within the polymeric material.

Several analytical techniques have been introduced to answer
these issues. Hui et al. [1,2] have studied the effect of modulus
and aspect ratio of a single inclusion using simple engineering
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approximations based on the shear-lag model. Several authors
[3—5] have extended the Halpin—Tsai equations and the
Mori—Tanaka average stress theory to address the importance
of orientation and partial exfoliation of clay platelets. Constitu-
tive models have also been introduced for describing the stiff-
ness of composites reinforced with carbon nanotubes [6].
Since these analytical approaches are limited to simple
geometries, numerical simulation models have also been pro-
posed. Buxton and Balazs [7] have introduced a three-dimen-
sional lattice spring model to study the stress distribution
around a single platelet. The deformation behavior of poly-
meric chains around nano-inclusions of various shapes has
been investigated using rotational isomeric state models [8]
which clearly indicate greater reinforcement from oblate par-
ticles. Molecular dynamics simulations [9,10] were later em-
ployed to calculate the stress—strain behavior of a polymer
composite reinforced with single carbon nanotubes of two dif-
ferent lengths. Finite-element models have also been used by
several researchers. Hine et al. [11] have studied the effects
of aspect ratio and fiber length distribution. The study however
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was limited to small aspect ratio values not exceeding 50. The
effect of fiber waviness was investigated by Fisher et al. [12].
Miyagawa et al. [13] applied the finite-element method to
nanoclay inclusions but the investigation was again limited
to small aspect ratios of 30, vs. several hundreds for actual
clay platelets.

In a previous series of articles [14—16], we introduced a sto-
chastic Monte—Carlo approach for the study of the tensile
modulus and strength of short-fiber-reinforced composites.
The approach is especially well suited for the study of tensile
strength since it explicitly takes into account local stress con-
centrations at the interface between matrix and inclusion. In
the model, the composite material is represented by a 3-dimen-
sional lattice of bonds having different elastic constants for the
inclusion and for the matrix. For a given value of external
strain, the lattice sites are relaxed towards mechanical equilib-
rium with their neighbors by a systematic sequence of opera-
tions which steadily reduce the net residual force acting on
each site. As the bonds are stretched, their local stresses com-
bined with thermal activation rate theory [17] defining proba-
bilities for bond rupture. Bonds belonging to the inclusion
and to the matrix are allowed to break during the fracture of
the composite. In the present work, this model is extended to
the case of platelets and fiber inclusions of very high modulus
and aspect ratio values, typical of those found in nanocompo-
site materials. The approach provides a comprehensive treat-
ment of the dependence of composite mechanical properties
on the interrelated effects of orientation, volume fraction,
aspect ratio and modulus of the inclusions. Since the latter
typically offer very large surface areas in all nanocomposite
systems, our model also allows one to study in detail the impor-
tance of the thickness and modulus of the interfacial region
between matrix and filler. Being on a mesoscopic scale, our
approach however is incapable of predicting the properties of
that interface for a given choice of inclusion and matrix. Com-
plicating effects such as filler-induced crystallization deep
inside the matrix are also beyond the scope of this work [18].

2. Model

Following Ref. [16], our model representation proceeds as
follows. We start with a 3-dimensional x—y—z lattice of up to
300 x 300 x 300 sites and choose the y direction as the tensile
axis. The thickness of a platelet as well as the diameter of a fiber
are set equal to one lattice unit so that the unit lattice length is of
the order of 1 nm. For each inclusion to be constructed on the
lattice, an orientation angle @ with respect to the y-axis is first
selected according to the probability distribution
-3/2

P(0) = 2*(cos® 6+ A’ sin® 0) (1)

which leads to an average [16]

(eos?6) = [/ (2~ )}{1 = (2 = 1) [0 1))}
2
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Egs. (1) and (2) were originally introduced by Kuhn and
Grun [19] to describe the orientation of chain vectors in an iso-
tropic polymer following tensile deformation through a draw
ratio A. Henceforth, A will be left as a free parameter used to
control the distribution of orientations for an inclusion. These
inclusions are constructed as follows. Starting from a site se-
lected at random, a cluster of bonds is generated on the lattice
by connecting the nearest neighbor sites along a direction at an
angle 0 with the y-axis. Upon reaching a preset aspect ratio
value, a second cluster is started from another site and along
a different 6 value, again selected from Eq. (1) and so on
and so forth until a predetermined fraction of bonds V; for
the inclusions is reached. Upon completion of that process,
bonds along the tensile y-axis that belong to the inclusions
are given an elastic constant E;, whereas those in the transverse
x- and z-axes are assigned a shear modulus value, G;. Simi-
larly, matrix bonds are given the modulus values E, and
G, depending on their orientation. Our model representation
is schematically illustrated in Fig. 1 for the case of fiber inclu-
sions randomly oriented in the x—y plane.

The lattice described above is strained in tension along the
y-axis at a constant rate of deformation and temperature 7. In
the course of that process, bonds are broken according to the
kinetic theory of fracture [20], i.e. at a rate

v=rTexp[(—U + Ba)/kT)] (3)

where U is the activation energy, 7 is the thermal vibration fre-
quency (~ 10'2 s71) and @ is the activation volume. In Eq. (3),
o is the local stress

o=Kze (4)

where K is the elastic constant for the bond whereas ¢ is the
local strain. This bond-breaking process is executed with the
help of a Monte—Carlo process (for more details, see Refs.
[14,15]) which, at regular time intervals, also relaxes the lat-
tice to its minimum energy configuration. That minimum is
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Fig. 1. Model representation of fiber inclusions randomly oriented in the x—y
plane. The fiber aspect ratio is set at I/d =9.



6950 Y. Termonia | Polymer 48 (2007) 6948—6954

assumed to be reached when the net residual force on a lattice
site falls below a few percent of the overall force on the com-
posite. Our relaxation process leads to motions of the sites
along the various coordinate axes. For simplicity, these mo-
tions are assumed to be mutually independent and we focus
on displacements along the y-axis along which the composite
is strained. Thus, the strain values ¢ (see Eq. (4)) are for elon-
gations along the y-axis and they represent either an axial
tensile strain (for bonds along the y-axis) or a shear strain
(for bonds along the transverse x- and z-axes). Similarly, K
in Eq. (4) denotes a tensile modulus (E,, or E;) or a shear
modulus (G, or Gj)).

Application of the model described above requires a de-
tailed knowledge of the values for the activation energies U
and activation volumes (8 (Eq. (3)) for the various types of
bonds. These sets of values are rather difficult to determine
experimentally. As in Ref. [16], we assume that both the inclu-
sion and the matrix are isotropic so that U and ( are the same
for all the bonds belonging to the same component. Values of
U and {8 for a given component (matrix or inclusion) are then
selected so as to give reasonable values for its tenacity and
elongation at break. Typical parameter values are as follows.

Testing conditions
The temperature is set equal to 23 °C and the rate of elon-

gation equals 100% min "

Inclusions

In Eqgs. (3) and (4), we choose U =50 kcal/mol,
6=(3.31 A)2 Unless otherwise specified, we also take
E; =178 GPa. (The latter value is equal to the tensile mod-
ulus of montmorillonite (MMT) platelets [4].) The above
parameter values lead (at the selected testing conditions)
to an elongation at break of around 6% and a tenacity of
~ 10 GPa. Poisson’s ratio for the inclusion is set equal to
0.2 so that, G; = 74 GPa.

Matrix
We take U = 29 kcal/mol, 8 = (4.9 ;\)3, and E,, =2.7 GPa,
equal to that of nylon-6 [4]. These values give an elonga-
tion and tenacity at break of 17% and 0.45 GPa, respec-
tively. Taking Poisson’s ratio equal to 0.35 leads to
Gy =1GPa.

Interface
Unless otherwise specified, the interface between inclu-
sions and matrix is given the same mechanical properties
as those for the pure matrix.

3. Results and discussion

Fig. 2a—d shows model representations of several nano-
composite systems to be studied in this section. All the four
figures are for a 1% volume fraction of inclusions with same
aspect ratio //d =40 for ease of visualization. For platelets, /
represents the diameter and d is the thickness, whereas for

fibers, / is the length and d is the diameter. The tensile y-
axis in Fig. 1 is along the vertical and the cube has side
200 nm.

Fig. 2a shows platelets randomly oriented with respect to
the y-axis ((cos”#) =0.33, see Eq. (1) with A= 1). Fig. 2b
is the same but for fibers. Comparing with Fig. 2a, we note
that fiber inclusions have a much higher surface area than
platelets and hence the probability of fiber—fiber contacts is
high even at a low V; of 1%. In all our simulations of fiber-
reinforced systems, the number of fiber—fiber contacts is mini-
mized and our model predictions therefore represent ultimate
properties. No such minimization has been attempted for the
case of platelets because the incidence of platelet—platelet
contacts is much lower. The case of platelets with high orien-
tation, (cos?f) =0.86 is illustrated in Fig. 2c. Fig. 2d de-
scribes an intercalated system which was obtained by
dispersing stacks of two platelets separated by a distance of
2 nm.

We now turn to a detailed study of the various factors con-
trolling the tensile modulus of these nanostructures.

3.1. Effect of aspect ratio

Fig. 3 shows the effect of aspect ratio of the inclusion on
composite modulus for the case of platelets (O) and fibers
(@). The composite modulus predictions have been normal-
ized by the matrix value, E,,. The figure is for V; =3% and
perfect orientation of the inclusions along the tensile y-axis
((cos? §) = 1). Both curves show the presence of two different
regimes: a first regime in which modulus increases sharply
with aspect ratio, followed by a second region in which the
rise becomes slower. The transition between these two regimes
is determined by the corresponding critical aspect ratio value
which is required for these inclusions to reach the properties
of infinitely large objects. For the case of fibers, the transition
is observed at //d =60. The latter equals the critical aspect
value obtained previously [21] for a single fiber with same
E/E,, ratio. Because of their higher inertia, platelets have
a higher critical aspect ratio than fibers, which explains the
higher //d value (~ 160 vs. 60 for fibers) at which the transi-
tion in Fig. 3 is observed. This is more clearly exemplified
in Fig. 4 which shows strain profiles along the tensile y-axis
within each type of inclusion for a value //d = 100. The strain
has been normalized by the overall strain on the composite.
The figure clearly reveals that the fiber (@) easily reaches
the overall composite strain in its middle section, thereby in-
dicating that the critical aspect ratio value has been exceeded.
In the case of platelets, on the other hand, the strain does not
exceed 80% of the composite strain and the current aspect ra-
tio I/d =100 is less than critical. Further inspection of Fig. 3
also reveals that the platelets, although subcritical, provide
a better reinforcement than fibers at all //d >100. These obser-
vations are in line with rotational isomeric state [8] and recent
coarse-grained MD simulation [22] results. Also represented
in Fig. 3 (----) are the predictions of the Halpin—Tsai equa-
tions which do not take into consideration the shape of the in-
clusions. Inspection of the figure reveals that these predictions
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Fig. 2. Model representations of several nanocomposites with 1% inclusions of same aspect ratio 40: (a) randomly oriented platelets with cos® 8 = 0.33; (b) same
but for fibers; (c) platelets oriented along the y-axis with cos> 8 = 0.86; (d) same as (c) but for an intercalated system made of stacks of 2 platelets at distance 2 nm.

The tensile y-axis is along the vertical and the cube has side 200 nm.

follow our results for fibers and platelets at low and high
aspect ratios, respectively.

3.2. Effect of orientation

The effect of the orientation factor cos®f is studied in
Fig. 5 at same //d =100 and V;=3%. Both curves reveal
a sharp increase in modulus at (cos2 6) values larger than
~0.95, i.e. at angles 6 < 13°. The high anisotropy observed
in Fig. 5 is due to the large mismatch in elastic modulus
between the inclusion and the matrix. Our findings are very
similar to those obtained for the development of modulus
with orientation in crystalline fibers [23]. There, angles of
less than 5°—10° between the polymer crystals and the fiber
axis are required for achieving high stiffness in the fiber. Fur-
ther inspection of Fig. 5 also reveals that platelets perform
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Fig. 3. Effect of aspect ratio //d on composite modulus for platelets (O) and
fibers (@) with E; = 178 GPa. The composite modulus value has been normal-
ized by E,. The figure is for V;=3% and perfectly oriented inclusions
(cos? @) = 1. The curves are drawn to guide the eye.
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Fig. 4. Strain along the tensile y-axis within a fully oriented platelet (O) and
fiber (@) with same aspect ratio //d = 100.

significantly better than fibers at orientation levels (cos” f)
lower than 0.8, i.e. 0 < 26°.

3.3. Effect of the matrix/inclusion interface

An important feature of nanocomposites is the large contri-
bution of the matrix/inclusion interface. Its effect is studied in
Fig. 6 for increasing values of the interfacial modulus, E,,;
(normalized by E,,). The figure is for fibers with //d = 100,

2.4

Composite Modulus Ec/Em

O Platelets
@ Fibers

10 | | |
0.2 0.4 0.6 0.8 1.0

<cos2 6>

Fig. 5. Effect of inclusion orientation on composite modulus. The figure is for
3% inclusions with aspect ratio 100. The two sets of symbols are for platelets
(O) and fibers (@). Both platelets and fibers have same E; = 178 GPa and
Gi =74 GPa.
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Fig. 6. Effect of interfacial modulus E,, ; at two different values of the interface
thickness 6. The figure is for fibers with //d = 100, V; = 3% and (cos® ) = 1.

Vi =13%, (cos® ) = 1 and two different values of the interface
thickness 6 (in units of the fiber diameter d ). The results indi-
cate that composite modulus increases with E,,; but quickly
reaches a plateau value at small 6 = d. Turning to application
to experiment, an increase in E,,; can be achieved through
functionalization of the inclusion and subsequent crosslinking
with the matrix (see for example, Ref. [24]). This process
however is not expected to increase Ey,/E,, to values beyond
the 2—3 range. Turning to our model predictions of Fig. 6, that
increase in interface modulus leads to E./E,, values no higher
than ~2.4, which is still below the 2.95 value obtained from
the law of mixtures (EJ/E, =V; X EJ/E,, + (1 —V))).

3.4. Effect of clustering of the inclusions

Fig. 7 shows our model predictions for platelets at increas-
ing values of the number ‘n’ of platelets per cluster. These
n-platelet clusters were dispersed in the matrix and given per-
fect orientation along the y-axis. The distance between plate-
lets within a cluster is set equal to 2 nm, see also Fig. 2d.
Our results reveal a linear decrease in modulus with the extent
of clustering. These results are not surprising as an increase in
the number of platelets per cluster is equivalent to a decrease
in the effective aspect ratio of the reinforcement, see also
Fig. 3.

3.5. Stress—strain curves and mode of failure

Fig. 8 shows our calculated stress—strain curves for the
pure matrix (X) and after reinforcement with 3% platelets
(O) and fibers (@). Both types of inclusions have perfect
orientation and aspect ratio equal to 100. Model results (not
reproduced) reveal that, near 2.5% strain, the matrix starts to
fail in tension near fiber ends or along the perimeter of the
platelets. These interfacial cracks then propagate transversally
deep inside the matrix and, in doing so, quickly become
blunted by neighboring reinforcements. Upon further strain-
ing, the latter start to fail leading eventually to composite fail-
ure. Inspection of Fig. 8 reveals that platelets fail near 5%
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Fig. 7. Effect of clustering of the inclusions. The figure is for platelets with
I/d =100, V; = 3% and (cos® ) = 1.

strain, versus a 6—7% value for fibers. As a result, fiber rein-
forcements lead to higher composite toughness, which com-
pensates for their lower efficiency in increasing modulus.

3.6. Comparison to experiment for MMT platelets

Fig. 9 shows experimental data reported by Fornes and Paul
[4] for montmorillonite (MMT) nanoplatelets (O) as well as
for glass fibers (@) dispersed in nylon-6. The MMT platelets
are reported to have exceptional exfoliation and their aspect
ratio is estimated around //d = 100 [4]. The platelets are also
very well oriented along the tensile (flow) direction. The glass
fibers, on the other hand, have I/d = 20 with a tensile modulus
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Fig. 8. Stress—strain curves for the matrix (X) and after reinforcement with
3% platelets (O) and fibers (@ ). Both types of inclusions have perfect orien-
tation and aspect ratio equal to 100. The results are for an x—y—z lattice of
200 x 200 x 50 lattice sites.

E; =72 GPa and Poisson’s ratio equal to 0.2. At V; < 10%, the
fiber orientation is reported to be poor, whereas at higher V;,
orientation greatly improves because of an increase in melt
viscosity and filler—filler interactions [4]. Also reported in
Fig. 9 are our model predictions for the two cases. The
MMT platelets are for the case //d=100 and (cos” @) = 1.
Model results for glass fibers are for //d =20 and two different
orientation values: (cos®#) =1 and (cos” #) = 0.83. Our pre-
dictions are in good agreement with experiment, which leads
to confidence in the validity of our approach.

3.7. Application to carbon nanotubes (CNTs)

Recently, there has been a great interest in the use of carbon
nanotubes (CNTs) for composite reinforcement [24]. That in-
terest stems from their high aspect ratio and modulus value
around 1000 GPa. Fig. 10 shows our model predictions for
nanocomposites reinforced by platelets and fibers with
E; =1000 GPa. The figure is for V; = 3% and perfect orienta-
tion of the inclusions along the tensile y-axis ((cos” ) = 1).
Our calculated curves follow the same trends as those obtained
in Fig. 3 for softer inclusions (E; =178 GPa). The plateau
values however are obtained at higher //d values. For the
case of fibers, a plateau is observed at I/d =120 (vs.
I/ld =60 in Fig. 3), which is again close to the critical aspect
ratio value obtained previously [21] for E; = 1000 GPa.

We now turn to comparison with experimental data of the
tensile modulus of drawn fibers [25—27] reinforced with
carbon nanotubes. The source of CNTs typically comes from
Carbolex which consists of 2 pm ropes 10—20 nm in diameter
with aspect ratio //d = 100—200. Recent investigations of the
ultrasonication techniques used to exfoliate these ropes into
single nanotubes have revealed a substantial degradation in
length [28]. Field-emission studies of exfoliated systems
[29] indicate that the CNTs must be given an aspect ratio
around 70 in order to obtain agreement with the Fowler—
Nordheim equation. These observations are also in line with
recent morphological studies [30]. In view of the above
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Fig. 9. Comparison with experimental data of Fornes and Paul [4] for MMT
platelets (O) and short glass fibers (@). Our model results for MMT are
for 1/d=100 and (cos’#)=1. Model results for glass fibers are for
Ild=20 with (cos’#)=1 and (cos®#)=0.83. For glass, we took [4]
E; =72 GPa and G; =30 GPa.
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0 50 100 150 200
aspect ratio

Fig. 10. Effect of aspect ratio //d on composite modulus for inclusions with
a modulus value E; = 1000 GPa, typical of that for carbon nanotubes. The
composite modulus value has been normalized by E,. The figure is for
Vi = 3% and perfectly oriented inclusions (cos” #) = 1. The curves are drawn
to guide the eye.

consideration, we choose in our model simulations, a value
I/d =70. Since the results of Refs. [25—27] are for drawn fi-
bers, we also take (cos” #) = 1. Comparison with experimental
data is presented in Fig. 11. As in Fig. 9, model predictions are
in good agreement with experiment.

4. Summary and conclusions

We have presented a numerical finite-difference model for
the study of the factors controlling the properties of compos-
ites reinforced with platelets and fiber-like nano-particles.
The approach is very flexible and it provides a comprehensive
treatment of the dependence of composite modulus and
strength on the shape of the inclusions and the interrelated ef-
fects of their orientation, volume fraction, aspect ratio, modu-
lus and interfacial adhesion with the matrix.

At the same volume fraction, we find that platelets are
generally more efficient than fibers in improving composite
modulus. This is rationalized through our model finding that
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71 O : PP (exp, Ref.25)
® : PP* (exp, Ref.26)
O : pitch (exp, Ref.27)
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Fig. 11. Comparison with experimental data for carbon nanotubes (CNTs) in
various fiber systems. Our model results are for (cos® ) = 1, l/d="70 and
E; = 1000 GPa.

fibers have a typically low critical aspect ratio value, which
puts an upper limit to their reinforcement potential. Platelets
also turn out to be superior to fibers in all nanocomposites
characterized by a poor orientation of the inclusions. We
also find that low interfacial adhesion and poor dispersion of
the inclusions lead to a decrease in reinforcement efficiency.
Turning to comparison with experiment, a good agreement is
found between our model predictions and modulus data on
nanocomposites reinforced with montmorillonite platelets
and carbon nanotubes.

It is important to stress that, being on a mesoscopic scale,
our approach is incapable of predicting the properties of the
interface between inclusion and matrix for a given system.
Complicating effects such as filler-induced crystallization
deep inside the matrix are also beyond the scope of this
work [31].
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